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Using Finite State Automata to Produce
Self-Optimization and Self-Control

Brian Tung and Leonard Kleinrock

Abstract—A simple game provides a framework within which agents can spontaneously self-organize. In this paper, we present this
game, and develop basic theory underlying a robust method for distributed coordination based on this game. This method makes
use of finite state automata—one associated with each agent-which guide the agents. We give a new, general method of analysis-of
these systems, which previously had been studied only in limited cases. We also provide a physical example, which should hint at

the type of problems resolvable using this method.

Index Terms—Approximation, decomposition, finite state automata, optimization, random walk, robotics, state aggregation.

1 INTRODUCTION: THE GUR GAME

I N many of the problems in distributed systems, we wish
a collection of agents to cooperate on a task which is
most easily controlled centrally (that is, from “outside” the
system). In other words, we desire a mechanism capable of
producing cooperation in the agents, with only a simple
command from outside. In this paper, we develop such a
mechanism using finite state automata associated with each
agent. These automata independently “guide” the agents,
while taking into account feedback that captures the com-
posite effect of all the agents’ actions. Ramadge and Won-
ham [5], [9] give a similar treatment by means of discrete
event decision systems (DEDS), but the conditions differ, as
will be detailed below. .

We introduce this scheme with a simple game, called the
Gur Game by Tsetlin [6]. Imagine that we have N players,
none of whom are aware of the others, and a referee. Each
turn, the referee asks each player to vote yes or no, then
counts up the yes and no answers. A reward probability r =
r(f) is generated as a function of the fraction f of the players
who voted yes. We assume that 0 < r(f) <1 forallf, 0 <f<1.
A typical function is shown in Fig. 1. Each player, regard-
less of how he voted, is then independently rewarded with
probability 7, or penalized with probability 1 - r. In general,
the individual players know neither the fraction f nor the
reward function 7(f). Let us suppose that at one turn, the
fraction of players voting yes is f;. Then, the reward prob-
ability is r, = r (fy). Each player is then rewarded with prob-
ability ry, or penalized with probability 1 —r;.

The maximum of the reward function in Fig. 1 occurs at
£ =0.3. We can show the following: no matter how large
the population size N, we can construct finite state automata
such that exactly f~ of them vote yes—after enough trials—
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with a probability arbitrarily close to one, as long as
r(f*) > 0.5. This property holds no matter what other char-
acteristics the function has—whether or not it is discontinu-
ous, multi-modal, etc. Moreover, each player plays solely in a
greedy fashion, each time voting the way that seems to give
that player the best payoff. This is somewhat unexpected.
Typically, gjreed leads to significantly suboptimal outcomes;
an example of this is the prisoner’s dilemma [2]. However,
we will see that the method used here does not have this
property, because each player effectively evaluates the suc-
cess of an action jointly with the actions of the other players,
rather than tonditioning it on those actions.
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Fig. 1. Typical reward function.

Strictly speaking, the Gur Game concerns optimization
and not distributed control. However, control often reduces
to maximizing a desirable quantity; often, one does not care
about the mode of control, as long as the results are desir-
able. For instance, when performing load balancing, it is not
necessary to demand explicitly that a job be transferred
from this machine to that one; that the performance is im-
proved is all that matters. The distributed aspect seems
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prevented by the requirement of a referee, but we sha]l see

that the referee can in fact be. replaced by a globally observ- - -

able quantity, such as (in some cases) utilization.
Many of the tasks.in distributed. systenmis must be han-

dled without explicit coordination, ‘because the systems,

being distributed, have no leader. Consider, for instance,

the problem of communication on a shared:channel: If one-

machine were given the task of polling the other machines,
then it could make a list of machines.to transmit in order,
However, in a distributed system, there is no such machine
a priori, and the only medium for electing a leader and dis-
tributing the transmission lists is the communication chan-
nel itself! The very resource being used to do the allocation
is also the resource that is being allocated.

Therefore, it is  necessary- for-the ‘machines to organize
themselves without explicitly communicating control infor-
mation. (Notice that we do not prohibit the machines from
making deductions about each other’s state, based on the
state of the channel.) The method outlined here allows them
to do that. (In [4], we find mentioned the inherent cost in

having: the agents physically. separated, due to the lack of
global knowledge. In our approach, that cost is not being side-
stepped; it is merely being distributed among the agents.)

The remainder of this paper is organized as follows. In

Section 2, we examine the principles-involved in using an

automaton to guide oneagent. In Section 3, we extend these
principles to deal with many automata. We give a method
that-allows us to approximate :the performance of these
automiata as a whole, without. going into exhaustive detail
about their individual behavior: In ‘Section 4, we: give an
example of a physical system that can be designed with the
aid of these automata. Finally, Section 5 summarizes our
accomplishments and previews future research.

2 SINGLE AUTOMATON BEHAVIOR

The automaton design we consider assumes the paradigm
described for the Gur Game; that is, automata perform by
trial ‘and error in an attempt to maximize some reward
probability. We first examine the single automaton case.
This will form the basis of our examination of the multiple
automata case in the next section.

Consider a single finite state automaton which is capable
of two outputs, Ay or A;. Suppose that at each’ discrete
moment in time (t = 0, 1,2, ...), the current output is
monitored, and based on that output a reward probability
is determined. If the output is Ay, the reward probability is
r =1y if it is-Ay, the reward probability is 7 = 7. (We assume
we are given o, #1 € [0, 1].) Then, with probability 7, the
automaton is rewarded; with probability 1 = 7,.it is penal-
ized. This cycle is repeated: the automaton chooses. either
Ag-or Ay, the corresponding reward probablhty is- deter-
mined, and the automaton is rewarded or penalized. The
automaton knows only that its output in.some way affects
whether it receives a reward or a penalty. We wish to de-
vise an-automaton that performs “well” (that is, it receives
a greater proportion of rewards), where performance, is
measured. relative to that. of a “null” automaton, which

~simply chooses A, or A; randomly with probability 1./2,

Tsetlin [6] gives the following design, which he calls L, ,.
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z 4" -1

Pr(4) ; = 30T
This expression yields 3/4 when # = 1, confirming our pre-
vious analysis. As #1 — oo, on the other hand, this probabil-
ity goesto 1. In fact, our derivation shows that for any r, ry,
such that r; > 7y and r; > 1/2, the probability of choosing A;
goes to 1 as 1 — 0. In other words, as the memory size gets
larger, the automaton chooses the best option with in-
creasing certainty.

Here, there is only a single automaton, acting in isola-
tion. This is basically the scenario developed by Ramadge
and Wonham in their articles on DEDS [5], [9]. However,
while they do account for the possibility of nondeterminacy
in the feedback mechanism, there is no explicit mention of a
reward function, nor is there an attempt to optimize be-
havior in that context. Furthermore, even though it is pos-
sible to use the “supervisory” automata in these papers to
guide many separate agents, there is no essential difference
in the treatment of this case; that is, it is assumed that there
is no cooperation between the agents. In the next section,
we examine whether it is possible to design automata that
perform well together when the reward probability is a
function of the aggregate behavior of many automata, even
if none of the automata may communicate directly with
each other.

@

3 MULTIPLE AUTOMATA BEHAVIOR

We now consider a population of N automata that share
only a common reward function. The automata are re-
warded based on the fraction of automata producing a cer-
tain output (say, 4;), and not on those particular automata.
We desire that the automata behave in such a way that they
maximize their collective reward.

Consider a population of N automata {&y, @, ..., o},
each capable of two outputs, Ay or A;, at discrete moments
in time (t = 0, 1, 2, ...). We call this population a system of
automata. For all m, 1 <m <N, let the output of automaton
o, at time ¢ be represented by u,, (t). Also, let a(t) represent
the number of automata with output A; and f(#) the fraction
of automata with output A, at time £.

We assume the existence of a reward function r(f), de-
fined by {0, 1] — [0, 1]. For each moment ¢, we compute a
reward probability r = r(f), whose value depends solely on
the fraction f = f({)(f = 0, 1/N,2/N, ..., 1). Even though f
can only take on one of N + 1 values, the function r(f) is de-
fined as accepting a continuous domain of values, both for
historical reasons [6], and. because it allows for changes in
the population. (We do not analyze the case of a changing
population in this paper, however.) Each automaton then
independently receives a stimulus x,,(t), which is a binary
valued random variable. It is either a reward (with prob-
ability 7), or a penalty (with probability 1 — r). We do not
assume that the automata know the reward function r(f).

Clearly, there exists at least one k" such that r(k’/N) > r
(k/N) for all k. Assume that k* is unique. Define ®(k) to be
the limiting proportion of time that k automata have output
A;; that is,

) 1 T-1
(k) = lim 7;0 ), k) G)

where the indicator {(x, y) is defined by {(x, y) = 1if x =y,
and 0 otherwise. We then ask: is it possible to design (finite
state) automata in such a way that ®(k") is arbitrarily close to
1? (If k* is npt unique, then we simply sum over all optimal
k) The answer is yes, as noted by Tsetlin [6], although he
only describes the construction and behavior of the auto-
mata, and does not develop a general method of analysis.

The autoﬁnaton we examine is the one defined in the
previous section; the state diagram is displayed in Fig. 2.
We assume that all automata have the same memory size 7.
For all m and ¢, let s,,(t) be the state of automaton- ¢, at time
t. We map states to outputs in a straightforward way. If
s < 0, then u,(t) = Ay otherwise, u,(#) = A;. The
automaton is said to be linear [6]; that is, state transitions
occur only between adjacent states, extept for the self-
transitions at states n and —1. We define the mapping s’ =
&Gs, x) to indjcate that an automaton moves to state s” when
it starts in state s and receives a stimulus x.

The behayior of this system can be viewed as that of a
random wa117< on the space SHV Refer to Fig. 3 where for the
sake of simp}licity we consider the simple case N =2, n = 3.
Note that f|can then take only three different values—
0,1/2,and 1,

Consider %first one automaton in isolation. Its behavior
resembles tl\lat of a random walk on the space S;. However,
the transition probabilities are not well-defined, because
they dependi on the state of the other automaton. The state
of an individual automaton does not contain sufficient in-
formation to| determine the reward probability.

Fig. 3. lllustration of random walk.

Now consider the two automata in conjunction. If we de-
fine the state of the population as a whole to be an ordered
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pair consisting of the states of the automata, then the be-
havior of the population cari:be viewed as a true random
walk (on the space 532 =5, % 5,). The ‘state now contains
enough’information to determine f and in turn, 7{f). Hence,
all the transition probabilities aré well-defined.

 We make the following important observation. In the
simple case N = 2, we can divide the state space 5’3 into
four quadrants. In any given quadrant, all states have the
same transition probabilities (with the exception of the bor-
der states). If the reward probability r < 1/ 2, there is a bias
toward the “origin”—the point where the four quadrants
meet. Conversely, if the reward probability r < 1/2, there is

a bias away from the origin. The further r is from 1/2, the,

stronger this bias. A similar assertion can be made for the

case of general N: we divide the state space 5’5 into 2"

quadrants. This random walk view should illustrate that
the system does not converge or get “stuck” in-local optima.
Instead, the population is constantly “in motion,” re-

sponding:to the reward function. With this observation in

mind, we will be able to appreciate more intuitively the
significance of our analysis below.. : :

3.1 Previous Work: Asymptoﬁe‘Behav'ior

First, however, let'us first describe the behavior of the system
as the memory size of the automata and the number of
automata increase without bound. Borovikov and Bryzgalov
{1] show that when n = 1—that is, when the automata have
two states—the behavior is not optimal; in fact, with prob-
ability one, f(t) approaches 1/2 in the limit'as N, f — eo.. This
is undesirable since it does not depend on the reward: func-
tion at all; the reward function might even -have a minimum
at f=1/2. Their demonstration of this result uses transforms;
we instead show this result intuitively as follows.

LEMMA. 1. Suppose that the memory size for each automaton is
n = 1. Suppose further that +(f) is continuous, and that
there exists some number. Ar-> 0 such that Ar <7(H <1 —
Ay forall f. Also, assume that all automata start in state 1.
Let £.(t) = limy_,.. f(t). Then lim, .. f..(5) = 1/2.

SKETCH OF PROOF. Let fy = f..(to) for-any:t; > 0. By the conti-
nuity of r(f), we know that the reward probability in
the neighborhood of f; is similarly in the neighbor-
hood of 7y = 7(fy). Now, f;'= f..(fs+ 1) consists of that
part of f; that was rewarded; plus that part of 1 — f
that was penahzed That quantity is

fi=rofo+ A-r)A~f) @

which is clearly a weighted average of fyand 1 - f,. By
the bounds on r(f), we know: that this new average
must be closerto 1/2 by a factor of at least 2Ar. O

While this proof is only applicable to the case of a con-
tinuous reward function and a particular initial condition, a
more complex one exists for the general case. We will not
attempt that here; however, the claim should bé plausible.
The corresponding exact analysis for # > 1 is too complex to
carry out exactly. However, based on simulations, and on
the conclusions from the approximate analysis below in
Section 3.2, we propose the following conjectures.
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CONJECTURE 1. For any value of N, .
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Fig. 6. Increasing y(0.1) as a function of population size.

Define P(5) to be the equilibrium state probability for the
state § . Then, we can write the detailed balance equations.

PG) = Y P@E)q(3),9) ©)

s

Knowing that the P(s) sum to 1, we can solve for P(5).
Then,

(k) = Y, PG) @)
#(&)=k

Unfortunately, solving a Markov chain with @n)" states
is far from trivial, and the solution would only give us a set
of probabilities, with no description of the dynamics of the
system. Therefore, we choose to simplify (and thus ap-
proximate) tbe analysis by aggregating the states.

Assume for the moment that 7 is large and that r(f) > 1/2
for all f. Then, at any time, most of the automata are in the
extreme states—that is, near n or —n. Therefore, f(t) is rela-
tively stable; since the automata are at or near the end most
of the time, |state transitions between —1 and 1 (let us call
these “trigger transitions,” since they “trigger” changes in a
(1), and hence, f(f)) are uncommon, and we can assume with
little loss of precision that at most one trigger transition can
take place at a time. For that reason, we call this the
well-behaved |case. (The remainder of the systems, where
r(h <1/2 f01§L some f, are called ill-behaved. We do not give a
separate analysis of them here, because the analysis is pro-
tracted and because they behave differently—even though

the resulting

If a syster
teaus during|
transitions. T

1) the prg
2) the ave

The quantity
two factors.
method for
of the form
f.<1/2iss0
now conside

distributions are similar.)

m is well-behaved, its behavior consists of pla-
which a(f) is constant, punctuated by trigger
herefore, this behavior can be decomposed into

bability distribution of a(t) during a plateau
rage length of a plateau.

7 ®(k) is simply a normalized product of these

Volkonskiy [8] makes use of this general
the simple case where the reward function is
() = ry for f < f, r(f) = r; < rg for f > f, where
me critical value. He also requires r; >1/2. We
1 these two factors in turn.

32.1 Probqbility Distribution of a(t) During a Plateau

Suppose the#‘t of the N automata, k are in a positive state.
With the eﬁception of sign, the dynamic behavior of an

automaton
there is no

j:, the same on either side of the state space:

ay to distinguish between an automaton and

its “mirror iﬂnage.” Roughly, then, any of the k automata on

the positive side is as likely to make the first trigger transi-
tion as any of the N - k on the negative side. Therefore, the
probability tll:at the next trigger transition goes from 1 to ~1
(from positiye to negative) is approximately k/N, and the
probability that it goes from —1 to 1 (from negative to posi-
tive) is approximately (N — k) /N. The former corresponds to
a decrease in a(f) by one; and the latter to an increase in a(f)
by one. This|suggests constructing the approximate Markov
chairi in Fig; 7, where the new states represent the values
that a(t) can [take, rather than the states of the automata. To
avoid confusion, we call the former system states, and the
latter automaton states. (The approximation lies in the as-
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sumption that each automata is-equally likely to make the
next trigger transition. This is not true: the automata in the
extreme states are less likely to do'so. Empirically, however,
this does not have a significant-impact on the accuracy of
our approximate formula.)

N-1 Nk+1 Nk
k k+l
N

Fig. 7. System state diagram.

This chain does not represent the-sequence of system
states at each discrete moment in’time, but is rather an
‘imbedded ‘Markov chain- which' represents the sequence of
system states at the instants just after the trigger transitions.
We can solve for the steady state probablhtles (k) of this
imbedded chain.

LEMMA 2, Suppose that in any system state, any automaton is
just as likely as any other to make a trigger transition.
Then the above transition probabilities are valid, and

Lo asN(N
H(k) =2 (k)
s the solution to the imhedded Mﬁﬂcov chzzin;_

SKETCH OF PROOF. Using the ass'tlmpti()n' in the statement of
the lemma, we can Wnte the following balance equa-
tion.

o = e N=k+1). . EaT k+1) g
TI(k) = TI( —1)T + Ik + )T 8
In add1t10n, we require that ' '

N

Y i =1

k=0

It is then a simple matter of étlgebra to show that the
solution is

L[N

TG tepresents the visit ratios to the various system states,
normalized to sum to unity. It has a maximum at k =.N/2, so
the system makes the most visits to that system state.

3.2.2 Average Length of a Plateau

Given a memory size n, we define the persistence time (k)
to be the average time that thesystem'spends in system
state k. It:is too difficult to determine 7, 0] exactly, 1nstead
we make an estimate 7, (k) = 7, (k).

Let £ ;(r) be the average amount of t]me it takes for an
automaton under reward  probability 7 to move  from
automaton state i to automaton state 1, with —1 <jzi<n
(We canrestrict our discussion'to the:positive side because
the behavior on the negative end is identical, by symmetry,
as discussed above.) There is.a self-transition at state 7, so

y
i

1

(é) ‘

b gt o
tﬁr“fl(r) Tl
Suppose on the other hand: lthat‘ the automaton ‘is it:t1r— '
renily at state i where 1'< 4 < After-one tim '\nit, either:it.

has moved down to state 7 = 1 (with probability 1 = 7), orit -
has moved up to state i + 1 (with probabﬂ' s 1), in which
case it must first move back to state i before it can move to

state  — 1. This gives us the recurrence equatlon i

B ()= 1+r[tl+11(r)+tl N EDI PR i<n

This recurrence equation can be solved by:'k}the usual
z-transform techmques [3] to yleld :

' sl n—il
o 12 .
biar) = -1 [T:;j -

o Toffor ) ,
tlt_l(r) = %—_T(l—_;:) **1

Immediately after a trigger transition, at leaét' one of the
automata—in particular,'the one that made the trigger. tran-

ao

for1<i<mn, and

sition—must be in either state 1 .or ~1. Therefore, the time

this automaton would take to makea trigger- tran31t10n back -
to the other side approximates the time be ”een trigger .
transitions by any single automata. Since each of the N
automata move mdependently, the expected trme between'; '
trigger transitions is approxtmately :

00 =7, (k) = t:_l(r(k/N))/N

1

Note that as'r mcreases, o) does the correspondlng per31s—‘
tence time: ; i :

323 The Decomposmon F?esult

Recall that the proportion of timhe that the: popula’aon
spends in system state k is.the. normahzed duct of the,. ,
visit ratios and persistence times. That is,

0k BN

B(k) = W00 13

> k’:D‘ H(k)f (k) : G |

We now have expressions: for these two- qua’nt s Which 5

allows us to establish the following approx1mat1cin

APPROXIMATION 1. Assume that any automaton is just as,
likely as any other to make a trigger transition. Also
assume that the persistence times are approximately. -

7,(k). Then the limiting probablhty that the system i is
in state k'i is approxmlately il

'@(k):—n(k” )
R )T, (k)

o zk =0
This approximation gives some insight mto the -above
conjectures.-We see that the:equilibrium system ‘state prob-
abilities are weighted binomial- coefflc1ents_:, where- each
weight is the per31stence time associated with that “system:
state. Suppose we havea reward“ fiihction whose peak is at” '
some f* not equalto 1/2: If we' ‘hold the population size N

constant, and increase the memory size #, +th a.pe_rs1sten§e,

‘,?(1‘4) |
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time for k" = f'N will become larger in relation to all other
system states. Eventually, the system will spend most of the
time at k', even though it makes more visits to the system
state k = N/2, where the binomial coefficient is the greatest.
(However, there is a cost to raising n: since all persistence
times are higher, the system responds slower to changes in
the reward function. Attention should be paid to this prop-
erty when response time is critical.)

If, instead, we hold the memory size n constant, and in-
crease the population size N, the visit ratios to the system
states in the vicinity of k = N/2 will grow larger in relation to
all other system states. Eventually, they will become so large
that the greater persistence time for k¥ = f"N is not enough
to overcome the number of visits to those central states, and
the system will spend most of its time around k = N/2.

ExaMPLE 2. Consider the reward function given in Fig. 8.

Note that this function has two local maxima; that is,
it is bimodal. In Fig. 9, we set N = 10 and #n = 5. Note
that the approximation is quite accurate, even though
r(f) <1/2 for some f.
In Fig. 10, we keep N = 10, and calculate the distribu-
tion for various values of n. The system performs
better and better as the memory size increases; note in
particular how the central peak splits to cover the two
maxima of r(f). ' |
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Fig. 8. Example 2 reward function.
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Fig. 9. Steady state probability distribution for Example 2.

445
In most cases, a bimodal or multimodal reward function
does not adversely effect either the accuracy of the
approximation or the steady state behavior of the system.
Recall that the behavior of the system can be described as a
random walk in which more time is spent in good system
(aggregated)| states than in bad ones. It is not the case,
therefore, that a local optima ¢an “trap” the system.

For the same reason, there is no dynamic difference
between the transient behavior of the system and its
steady state| behavior. It is only that when considering
transient behavior, we are usually more interested in the
time it takes|for the statistics to match the eventual steady
state distribution.

To make a simple analogy, consider a man performing
a random walk on a circle. If his movement is symmetric,
the steady state distribution is uniform. Now, in the sense
that one cannot tell by observing the man for a moment
whether he just started his walk or has been walking for a
long time, the transient behavior is identical to the steady
state behavior. ‘

However,| it will take some time for the statistics of any
single instange of this man’s path to become anywhere near
uniformly dﬁstributed. How long this takes is a parameter
of interest, and depends on a number of factors, such as the

size of the man'’s steps and the rate at which he takes those

steps. Those
the reward f

factors correspond to the population size and
unction in the Gur Game. The larger the popu-

lation size, the shorter the steps, so to speak, and the more

steps that m
Similarly, th

ust be taken to reach an optimal system state.
o “higher” the reward function, the longer the

plateaus between trigger transitions, and hence the longer it
takes to movie from one system state to another. This can be

seen as a quasi-transient behavior, and it is possible to cal-
culate the average amount of time to reach the optimal
system state, but that is beyond the scope of this paper.

It is important to remember that just as the system is not
trapped into| local optima, it is not trapped into the global
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Fig. 10. Effect
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optimum, either: For this method to-be applicable it must

be acceptable to the system:designer:for optimality to be an-

average behavior rather than a constant one. If one requires
the system to lock into a behavior that will always be opti-
mal, then this method is not appropriate.

However, this feature has the effect that the system is
able to respond to a changing: population and reward func-
tion. The system will still perform’as indicated, spending

comparatively more time at'the new maxima. This robust--

ness is an important positive feature of this scheme; for in-
stance, it tolerates faults such as malfunctioning agents or
changes in the performance critéria.

EXAMPLE 3. In this example, we highlight the decomposition
form of our formula. Consider the reward function

_ 09 if=01
rf) = {0.6 otherwise
In Fig. 11, we set N = 10-and n = 3. Note that the equi-
librium probabilities are normalized binomial coeffi-
cients, as predicted, except at k=k" =1  (where
f=0.1), where the probability is greater because of the
- longer persistence time.

EXAMPLE 4. To illustrate the convergence of the algorithm
and the accuracy of the approximation over a larger
range of reward functions, we consider a system with
N =5 and n = 3. We use the set of reward functions
r(f) such that r(f) = 04, 0.6, or 0.8, for all f=10.0, 02,
0.4, 0.6, 0.8, or 1.0. There are thus 3% = 729 different
reward functions. We examine the equilibrium prob-
abilities under all 729 functions after 100 cycles (or
time units) and 1 000 Cycles

If we denote the simulation probabilities by ®,;,(k)
and the approximation probabilities by ®,,,,..(k), then
we define the error between the two as

N
error = [(I) (k) ~ (k)]

sim
k=0

pprox

approx

In Fig. 12, we give the distribution of error across all
729 functions. For instance, the curve for 1,000 cycles is
approximately equal to 0,23 at zero. This means that
about 23% of the functions produce an error of between
0.00-and 0.01 after 1,000 cycles. After 100 cycles, the ap-
proximation has a median error of about 0.10, and after
1,000 cycles, the median error is only about 0.03. After
more than 1,000 cycles, the error distribution does not
change much. This suggests both that the approxima-
tion is very close to the actual result, and that the algo-
rithm converges quickly. Examination of the simulation
traces reveals that the approximation is most ‘accurate
when the reward function is most nearly linéar, and

. least accurate when there are r:dany changes in slope
(particularly at f = 0.4 or 0.6). The scope of this paper
does not allow us to. go 1nto greater detaﬂ about this
correspondence.

Our model can easily be generalized to allow more
than two outputs, by -adding -more - “arms” to- the

automaton’ design. (Con51der that our current amodel has
two—a positively numbered ‘arm, and a negatively nums-
bered arm-—and thatthe sign-has no semantics other: that
to distinguish the two: arms) For complet : detalls “the:
reader is referred to [7] S
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Fig. 11. Steady state probabiﬁty dié}ﬁbu ‘ n for Examp!
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Fig. 12. Error distribution across gehéral reward functionst.' &

4 EXAMPLE: COOPERATIVE Rosoncs

The Commotion Laboratory at UCLA conducts research,
into all aspects of mobile robots (or “mobots”). One of these:
is the prospect of some means of automated cooperatlon Is.
it possible to- get the mobots to ~complete a complex task
(that is, one that requires the cooperation of many) withotit ,

‘ 1nd1v1dua11y drrectmg ea_ch one: through every subtask7

1. The Commotlon Laboratory is supportfed by the Nanonal Sc1ence
Foundation-tnder Grant No. CDA- 9303148 S w ] o
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In this example, we shall see how the Gur Game para-
digm can be used to produce exactly such cooperation. The
experiment described here is based on measurements taken
at the Commotion Laboratory, although it was not con-
ducted in its entirety. For that, we have chosen to conduct
simulations (for simple expediency).

The scenario for this experiment is as follows. Consider a
landscape containing pieces of ore (represented by tin
cans). It is desired that the ore be collected and sorted by
type (represented by different colored paper labels on the
cans). For this experiment, consider two types, sorted into
two separate bins.

This is a task that can be completed correctly by one
mobot, but it is clearly faster to utilize more than one.
Suppose that we have a population of six mobots. Because
of variations in the physical components of the mobots,
some mobots are better than others at collecting, and
some are better at sorting. Furthermore, physical compo-
nents wear out, and relative abilities may change over
time as a result. :

In our scenario, the mobots have access to a single
shared access communication channel. Access to this chan-
nel can, in fact, be coordinated by use of the Gur Game, but
in this case, it was preassigned in a repeating frame of six
slots, one for each mobot. This channel is used by the
mobots only to inform the other mobots of their current
actions. These actions are one of: :

1) Collecting. This consists of searching out ore, retriev-
ing it with the mobot arm, and placing it in a sorting
bin.

2) Sorting. This consists of retrieving ore from the sorting
bin, sorting it based on its color (with a bank of RGB
sensors), and placing it in the correct finished bin.

These actions clearly map onto Ay and A; of our model.
For the purposes of this example, we ignore the quality of
the sort; it is the efficiency that interests us here.

A mobot which finishes sorting a piece of ore sends out a
signal to indicate that. This signal is used as the re-
ward /penalty signal; we were unable to use a remote con-
trol to trigger a base station to send a signal.

This signal is translated into a reward or a penalty as
follows: Time is divided into a repeating cycle of six peri-
ods (not to be confused with the communication channel
time division), one for each mobot. If a mobot receives a
signal during its period, it is rewarded; otherwise, it is pe-
nalized. At the end of the cycle, the mobots change the state
of their automata and, if applicable, their actions. The cycle
then repeats.

For this experiment, we used automata with a memory
size of n = 3, and a cycle 30 sec long, consisting of six peri-
ods of 5 sec each.

In actual mobots, variations in abilities, while measur-
able, are small enough that the effects of these variations
take a long time (on the order of an hour) to manifest them-
selves. In our simulations, to speed matters, we made the
variations artificially large, as in Table 1.

We assume that collection times are uniformly distrib-
uted, since the ore is uniformly distributed.

The scope of this paper does not allow us to go into full
detail on the results of our experiments. We conducted
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1,000 simula&ion trials, with each mobot initially collecting.

(This produged quite a full collection bin!) On average, it

took 38 cycles for behavior to settle on mobots 1 through 4
collecting, and mobots 5 and 6 sorting, as expected. These

38 cycles last
To simul
the collection

about 20 minutes.

te degradation of abilities, we slowed down

time of mobots 1 and 2 to 40-60 sec. (In actu-

ality, this can be effected by detuning the mobots’ “eyes.”)

On average,
the following
either mobot

it now took 32 cycles for behavior to settle on

curious arrangement: either mobot 1 or 2, and
5 or 6, sorting, and the rest collecting. It turns

out that these arrangements are optimal for the given

speeds!

Because of the random walk nature of the Gur Game,

however, this
the simulatig

“settling” was not permanent; in almost all of
n runs, the population oscillated back and

forth between the original division and the new one, al-

though more
ratio of appra

5 SUMMARY

time was spent in the new arrangement, by a
ximately 3:2.

We have examined the problem of how to design automata

so that they
maximum off
large class of
and derived
equilibrium §
approximate,
computer sin
composition
behavior of
overcomes ch
lation or rew
and its perfor

may work together cooperatively to find the
a given reward function. We have taken a
systems, namely, the well-behaved systems,
a simple, quickly evaluated formula for the
ystem state probability distribution, which is
but is quite accurate, as demonstrated by
nulation. The approximation displays a de-
form, which clearly illustrates the essential
he system. This method is robust in that it
anging conditions, such as shifts in the popu-
ard function. We have illustrated this method -
mance in a simple application.

In future research, we will investigate the application of
this scheme to the solution of difficult real world problem

formulations,
that are resol

We will characterize the space of problems
vable by this technique, and difficult to solve

by other methods. We also propose to give specific solu-
tions to some standard problems, and to detail necessary

modifications
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TABLE 1
TABLE OF MOBOT SPEEDS FOR TWO TASKS
Collection Time | Sorting Time
Mobot (sec) (sec)
1 20-30 20
2 20-30 20
3 20-30 20
4 20-30 20
5 30-45 15
6 30-45 15
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